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SUMMARY 
The paper reports on a numerical study of turbulent confined jets in a conical duct with a 5" divergence. The 
flow has a large ratio of jet to ambient velocities at the entrance so that it gives rise to strong recirculation. 
The calculations are carried out with a general finite volume method designed for calculating incompressible 
elliptic flows with complex boundaries. Turbulence is simulated by the standard k--E model. The sensitivity 
of the solution to numerical discretization errors is examined using three convection schemes, i.e. hybrid 
central/upwind differencing, QUICK and SOUCUP, on two grids consisting of 68 x 50 and 102 x 82 points 
respectively. An examination is also made of the influence of inlet boundary conditions on the predicted flow 
field. The computed results are compared with experimental data for mean axial velocity, turbulent shear 
stress and turbulent kinetic energy profiles. It is shown that the calculations reproduce the essential features 
of the flow observed in the experiments. 
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1. INTRODUCTION 

Confined jets constitute a class of turbulent shear flows of great practical importance. They occur 
in a number of engineering applications: the pressure rise generated by the jet entrainment acts as 
a pump in ejectors; the establishment of recirculating currents is essential for enhancing mixing 
and for stabilizing flames in combustors; and the momentum transfer between two streams of 
different velocities provides a way to increase the thrust of V/STOL aircraft. The increasing use of 
such devices calls for a general method for predicting these flows. 

From the computational point of view, confined jets also present several interesting features, 
such as the presence of an adverse pressure gradient, recirculation with unfixed separation and 
reattachment locations as well as coexistence of both strong and weak shear regions, which are all 
difficult to calculate and sensitive to  either the turbulence modelling or numerical solution 
procedure. For example, the use of the highly stable hybrid central/upwind differencing scheme 
can be seriously damaging to solution accuracy owing to a combination of high flow-to-grid 
skewness and low grid line density, while the higher-order schemes such as QUICK are prone to 
instability by generating negative values of turbulent kinetic energy in the ambient region where 
the turbulence level is very low. On the other hand, since widely different flows ranging from non- 
separating flow with weak adverse pressure gradient to recirculating flow subjected to a strong 
adverse pressure gradient can be generated by simply changing the inlet flow conditions, confined 
jets are an ideal testing ground for turbulence models. 

Craya and Curtet'.' developed an approximate theory based on the analytical solution of 
simplified equations of motion. They found that confined jets in constant area ducts can be 
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characterized by a prameter C,,  generally termed the Craya-Curtet number in recognition of their 
contributions in this field. Although the Craya-Curtet number C, is not constant in variable area 
ducts, its value at the entrance can still be used to characterize the inlet flow conditions. 
Experiments have shown that recirculation occurs in cylindrical ducts when C,  < 0.9639 and in a 
conical duct with a 5" divergence when C,b l * l . 5 v 6  

A numerical investigation was carried out on confined jets in both parallel and diverging 
circular ducts in Reference 7. Various turbulence models were used, ranging from the standard 
k--E model to second-moment closure, but it was found that the algebraic stress and Reynolds 
stress models did not manifest themselves to be significantly superior to the k--E model. 
Calculations were compared in detail with experiments; good agreement was found for a wide 
range of Craya-Curtet numbers, but the results deteriorated with increase of recirculation, 
especially in the case of the diverging duct. However, the calculations reported in Reference 7 
were based on lower-order discretization schemes and on a coarse 42 x 24 grid. It is now believed 
that the solutions may be contaminated to some extent by numerical diffusion at small values of 
C,, which correspond to strong recirculation. 

The present study continues the work reported in Reference 7. The major objective is to 
examine the influence of numerical discretization and inlet boundary conditions on the solution, 
which are the two most important error sources other than a possible weakness of the turbulence 
model. To this end, only the flow at C, = 0.59 is considered, for which the previous calculations 
gave the worst agreement with experiments. Recently, the present authors' proposed a composite 
discretization procedure for steady state flow calculations. This procedure, termed SOUCUP, 
combines the second-order upwind, central differencing and first-order upwind schemes, with the 
switch from one scheme to another being automatically controlled by a convection boundedness 
criterion. The primary test problem results showed that the SOUCUP scheme strictly preserves 
the boundedness of solutions while maintaining low numerical smearing of steep gradients. This 
scheme is used in the present work, together with the standard hybrid central/upwind scheme9 
and QUICK." Three inlet boundary conditions at two different initial jet shear layers are given 
to examine their influences on the solutions. Computational accuracy is assessed through 
comparison with experimental data. 

2. MATHEMATICAL MODEL 

Governing equations 

The flow considered is governed by the continuity equation and the Reynolds-averaged 
Navier-Stokes equations. The eddy viscosity, which relates the Reynolds stresses to the corres- 
ponding mean rates of strain, is calculated using the standard k--E model.'' The governing 
equations in non-orthogonal co-ordinates using Cartesian velocity components may be written in 
the general form 

- a ( C i 4  - Di4) = r"JS,.  
axi 

The convective coefficients Ci, the diffusion terms D, and the source terms S,  are given in Table I 
for different dependent variables 4. J is the Jacobian of the transformation between curvilinear 
co-ordinates xi and Cartesian co-ordinates yi ( i  = 1,2). Equations (1) include both plane (a = 0) 
and axisymmetric ( a  = 1) forms. 

Equations (1) have two important features which are worthy of mention: (i) they are of strong 
conservation form, in which all terms arising from the divergence operator are under differential 
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Table I. Form of terms in the individual equations 

1 0 0 0 

& 

i a  a 
- - ( - m + - ( P B : ) )  J ax ,  ax,  

a h  . Bj=cofactor of - In J 
xi 

operators; (ii) they do not contain second derivatives of co-ordinates (curvature terms), which are 
very sensitive to grid smoothness. 

Boundary conditions 

The flow configuration considered is shown in Figure 1 together with the notation and the co- 
ordinate system with y, = x  and yz = r. To facilitate the analysis, the flow field can be divided into 
the following three regions. 

(1) Potential core region in which the jet (primary stream) discharging at a uniform velocity U, 
from the nozzle of diameter do remains undisturbed. The length of the potential core is 
about 6d, 

(2) Ambient region occupied by the secondary flow issuing with a uniform velocity U ,  at the 
entrance. The turbulence level is very low and the flow may be treated as potential in this 
region. 

(3) Mixing region which is characterized by an initial high-shear layer and a continuous 
entrainment process until complete mixing of primary and secondary streams is achieved. 
Depending on the inlet value of C,, different scenarios occur in this region: at large C, the jet 
reaches the duct wall before it has consumed the ambient fluid and the flow does not 
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Geometry: do = 1.6cm, Do = 16cm, L = 64cm, 6 = 5'. 
Flow conditions: p = 0.998gm/cm3, p = O.Olgm/cm . s, 

UJ = 40cm/s, U,, = 2.33cm/s. 

Figure 1. Flow configuration and definitions 

separate; at small C, the jet has consumed all the ambient fluid before it reaches the wall, 
thereby creating reverse flow to satisfy the total mass flux conservation. After the mixing is 
complete, the flow degenerates eventually to the fully developed regime, if the duct is long 
enough, and becomes cylindrical. 

The Craya-Curtet number C, is defined by 

where m is the total momentum flux non-dimensionalized with the flow rate Q and the duct 
area S. It is shown in Reference 7 that if do +Do and U ,  + Woo (Woo = U,- U,), C, can be 
approximated by 

u a  DO C,=- woo d,' (3) 

It can be seen from this simple relation that in a given duct, recirculation may be generated and 
intensified by reducing the ambient flow velocity while keeping the jet velocity constant. 

The computational domain sketched in Figure 1 is a diverging duct of length L followed by a 
cylindrical duct. Four types of boundaries are present, i.e. inlet, outlet, axis of symmetry and solid 
wall. The outflow boundary of the calculations is placed at x = 7.5 Do, which is sufficiently far 
away from the end section of the diverging duct. At this boundary the streamwise derivatives of all 
variables are set to zero. The calculations do not extend into the viscous sublayer near the wall, 
but this is bridged with the wall function approach." In this the resultant wall shear stress is 
related to the adjacent nodal velocity component parallel to the wall by 

'cw= -AwV, (4) 
where A w = . p  i f y + < l l . 6 ,  

y ' = p C:14 k'/' y/p, 

pC :I4 k rclln (Ey + ) otherwise, 

K = 0-4187, E = 9.0. 
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Further, the diffusive flux of k is set to zero at the wall and the value of E at the first grid point 
away from the wall is determined from 

(5 )  
The inlet conditions demand special attention because they have a crucial effect on the 

predicted results." Outside the initial jet shear layer ( r < r l  or r > r z ,  where r1 and rz are the 
co-ordinates of the inner and outer edges of the initial jet shear layer respectively) the axial 
velocities are given the experimental values, i.e. jet velocity U ,  =40 cm s- and ambient velocity 
U,=2.33 cms-', and inside the layer the following Schlichting profileI3 is assumed 

&=C3/4k3/2 
p I Y .  

The radial velocity is set to zero. The values of k and E, which are not available from the 
experiment, are specified in the following three ways. 

BC1. 

BC2. 

BC3. 

For rl  < r < rz (in the shear layer) 

k = 1 v, auiar 1 /c ;/z , 
E = C, k2 /v, , 

v, = C '( r2 - rl)' I a u / a r  I, 

k=10-5, & =  10-5. 

(7) 

(8) 

(9) 

C = Om42 + 0.004 U,/ U,; (10) 
otherwise 

k and E are derived from the fully developed flows in two ducts which have the same 
cross-sections as those of the nozzle and the annular entrance of the secondary flow. 
For O G r G R  

k=UkU2, (1 1) 
E = a, k " ' / do ,  (12) 

where ak and a, are two adjustable constants. 

Numerical solution procedure 

The numerical method used to solve the system of equations (1) is a finite volume procedure 
designed for calculating incompressible elliptic flows with complex boundaries. It uses a non- 
staggered grid with all the dependent variables being stored at the same geometric centre of the 
control volumes. The normal-derivative diffusion terms were approximated by the central 
differencing scheme and the cross-derivative diffusion terms were treated explicitly as an 
additional source. Three discretization schemes were used to approximate the convection terms, 
namely hybrid central/upwind differen~ing,~ QUICK" and SOUCUP.* The last two higher- 
order schemes were implemented in a deferred correction way proposed by Khosla and Rubin.I4 

&,+ 1 = #'+ 1 + I (  o y -  f#$*l), (13) 
where 1 indicates the iteration level, u and h represent the upwind and higher-order schemes and i 
refers to the +-value at the cell face in question; the parameter I blends the two schemes, with 
limiting values 1=0 for the upwind and 1 = 1  for the higher-order solution. The deferred 
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correction leads to an always diagonally dominant coefficient matrix, thus lending the necessary 
stability to the numerical process while restoring higher-order accuracy at convergence. 

As a result the discretized counterparts of equation (1) can be cast into the following linearized 
form: 

where the main coefficients Ai include both the convection (calculated only by the upwind 
scheme) and the normal diffusion terms and the coeffcient S :  contains the physical source S ,  as 
well as the cross-derivative diffusion terms. The extra source term S ,  results from the anti- 
diffusive part A( & ' - c#$- ') of the deferred correction defined by equation (13). The resulting set of 
algebraic difference equations (14) was solved with the strongly implicit solution algorithm of 
Stone.' The calculation results were declared converged when the maximum normalized residue 
of all the dependent variables was below 0.5%. The details of the present numerical procedure are 
given in References 16 and 17. 

All calculations were performed on a Siemens/Fujitsu VP400-EX vector computer. The 
computer code has been vectorized to a major extent so that high computational efficiency can be 
achieved. The most important part not fully vectorized is Stone's solution algorithm, which 
consumed more than 60% of the CPU time. Nevertheless, the total CPU time was reduced by at 
least a factor of 40 compared with corresponding scalar mode runs. 

3. DISCUSSION O F  RESULTS 

Influence of numerical discretizations 

Computations were first performed to examine the grid dependence of the solution. To this 
end, two grids with 68 x 50 and 102 x 82 points and three discretization schemes, i.e. HYBRID 
(central/upwind differencing), QUICK and SOUCUP, were used. Figure 2 shows the upstream 
part of the 68 x 50 grid (the total length of the computational domain is 120 cm). The grid has 
been refined in the vicinity of the nozzle, particularly in the radial direction, to resolve steep 
gradients of the jet shear layer. Test results are shown in Figure 3(a) for the decay of the centreline 
velocity U ,  non-dimensionalized by the mean velocity of the section, Urn, and in Figure 3(b) for 
the radial variation of the turbulent shear stress UV at the section x=30 cm. The solutions of 
QUICK and SOUCUP on the fine 102 x 82 grid are not shown in the figures because the grid 
refinement from 68 x 50 to 102 x 82 produced too small differences to be seen on the graph. This 
means that both QUICK and SOUCUP already gave grid-independent solutions on the 68 x 50 

Figure 2. Grid in the upstream of the diffuser 
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(a) Centerline velocity decay (b) Turbulent shear stress 

Figure 3. Grid independence tests: 0, experiment;' 102 x 82 grid --, HYBRID 68 x 50 grid: ~ , s o u c u P  -- -, 
QUICK; ---, HYBRID 

N O  
5 

0.0 0.2 0.4 0.6 0.8 1.0 
r/R 

Figure 4. Turbulent shear stress: 0, experiment;' ~~ , SOUCUP (for U ,  V, k ,  E);  - - -, SOUCUP (only for U ,  V); 
- - -, HYBRID 

grid. It can be seen that the results of SOUCUP are nearly the same as those of QUICK; the 
result of HYBRID on the fine grid reached the higher-order solutions for the centreline velocity 
(Figure 3(a)), but this was not so for the turbulent shear stress profile in Figure 3(b). The CPU- 
times in minutes required for the calculations with SOUCUP/QUICK/HYBRID were 3.3/3.5/2*7 
on the 102 x 82 grid and 062/0.61/0-45 on the 68 x 50 grid. 

In the above calculations the higher-order schemes were applied not only to the momentum 
equations but also to the k- and &-equations. Since it was argued before that the use of higher- 
order schemes may not be necessary for the turbulence equations owing to their source-dominant 
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property,'* a calculation with SOUCUP scheme being applied only to the momentum equations 
was made to verify whether this argument is true or not for the present flow problem. The test 
result for the shear stress profile at x = 30 cm is shown in Figure 4. It can be seen that this 
calculation gives a result very close to that obtained with the HYBRID scheme, which shows that, 
at least for the flow problem considered, the turbulence equations are more sensitive to the 
convection scheme than the momentum equations. 

Influence of inlet conditions 

The sensitivity of the solution to changes in inlet conditions was examined by comparing 
centreline velocity decays resulting from the three different inlet conditions specified above (BC 1, 
BC2 and BC3 with ak=OO1 and ae= 3.65). Two initial jet shear layer thickness 6 = 1 and 0.1 
( 6  = 2( r2 - r l ) / & )  were used, the former corresponding to the experimental observation and the 
latter to a step profile which was usually declared in experiments because details of the initial 
shear layer behaviour were not examined. The initial eddy viscosity distributions resulting from 
the various inlet conditions for turbulent quantities are depicted in Figure 5. Figures 6(a) and q b )  

61 

1 

0 
0.0 0.4 0.8 1.2 r(cm) 

Figure 5. Initial eddy viscosity distributions: --, BC1 (b=l);  -, BCl (6=0.1); -0-, BC2; ---, BC3 (b=l);  
- - -. BC3 (S=O.l) 

0 10 20 30 40 50 
x(cm) 

0 
0 10 20 30 40 50 

x(cm) 

Figure 6. Centreline velocity decay: 0, experi~nent;~ - , BC1; ---, BC2; ---, BC3 
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show the influence of the inlet conditions on the centreline velocity decay. It can be seen that the 
predicted results are affected much more strongly by the initial shear layer thickness than by the 
turbulence conditions. The BC1 and BC3 results were very similar at 6 =  1, while the fully 
developed profiles (BC2) produced somewhat different results. The test shows that the turbulence 
can quickly adjust itself to a suitable level in the near-entrance region, but the jet tends to retain 
its core longer when the initial shear layer is thinner. It is of interest to note that the increase in the 
calculated non-dimensionalized centreline velocity profile in the near-entrance region (Figures 
3(a) and 6)  is only due to the decrease in the sectional mean velocity U,, whereas the centreline 
velocity U o  itself remains constant in the potential core. 

Presentation of results 

The results presented subsequently are all from the calculation with SOUCUP and the inlet 
condition BCI, obtained on the 68 x 50 grid. The predicted streamlines shown in Figure 7 convey 
an overall view of the flow pattern. It is seen that the ambient flow is sucked in by the jet in the 
near-entrance region and a long toroidal recirculation bubble is set up at the duct wall. Also 
shown in Figure 7 are the computed and measured separation and reattachement locations; good 
agreement between them is observed. 

The predicted axial mean velocity profiles at four sections are shown and compared with the 
experimental data in Figure 8. The calculation is seen to yield generally good agreement with the 
measurement for all the sections considered. These U-profiles clearly reveal the flow evolution: 
the interface between the two streams is well defined and there exists a constant ambient velocity 

0 10 20 30 40 50 60 70 
x(cm) 

Figure 7. Predicted streamlines 
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Figure 8. Axial mean velocity: 0, experiment:' __ , calculation 
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- 

- 

at upstream locations, say x = 10 cm; the jet continously expands in the downstream direction 
and at x = 20 cm it has entrained almost all the ambient fluid; further downstream reverse flow 
occurs and the flow has completely lost the character of a jet. Figure 8(d) indicates that the 
calculations underpredict the width of the reverse flow region, pointing to limited accuracy of the 
k--E model in this region. 

Figures 9 and 10 show the computed and measured turbulent shear stress (z) and turbulent 
kinetic energy (k)  profiles. Only measured normal stress components UU and VO were available 
and k was extracted from the experiments by assuming WW=G. Comparison with the experi- 
mental data indicates that the calculation qualitatively reproduces the basic turbulence character- 
istics observed in the experiment, but substantial discrepancies are present for both UV- and 
k-profiles. Since the numerical error has been reduced to a minimal level, these discrepancies must 
be attributed to shortcomings of the k--E turbulence model and/or to possible experimental 
errors. Part of the discrepancy seen in Figure 9(d) is due to the underprediction of the width of the 
reverse flow region, but it seems somewhat doubtful that in the experiments the change in sign of 
the shear stress UO should occur much further away from the diffuser wall than the velocity 
minimum. The measured turbulence intensity shown in Figure 10(d) also points to some un- 
certainty in the recirculation region. Moreover, an apparently unsteady behaviour of the 

- 
:(a) x=lOcrn : (b) x=20cm 

- 
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Figure 9. Turbulent shear stress: 0, experiment:' ~ , calculation 
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recirculation bubble in the downstream region of the diffuser was observed in the experiment,’ 
which cannot be simulated with the present numerical procedure. 

4. CONCLUSIONS 

The present study has demonstrated the importance of the use of higher-order schemes for 
discretizing the convection terms of transport equations. Both QUICK and SOUCUP give 
accurate numerical solutions already on the 68 x 50 grid, whereas the solution with the HYBRID 
scheme responds to grid refinement in a rather slow way, so that it is still far away from grid 
independence on the 102 x 82 grid. The higher-order discretization of the turbulence equations, 
often considered of subordinate importance, plays a crucial role in accurately simulating flows of 
this kind. 

The calculations were found to be more sensitive to the specification of the jet shear layer 
thickness than to that of turbulent quantities outside the initial shear layer at the inlet. A step 
profile consisting of uniform jet and ambient velocities, usually declared in experiments, leads to a 
rather poor prediction of the upstream flow field. The calculations with the inlet conditions based 
on the existence of an initial shear layer (BCl) yield generally good agreement with experimental 
data, but the recirculation region is preQcted somewhat too thin. 
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